Advanced Data Preparation Using IBM SPSS Modeler (V16)

Digi Academy
A Milano

Chiedi il prezzo
Vuoi parlare del corso con un consulente?
Confronta questo corso con altri simili
Leggi tutto

Informazione importanti

  • Corso
  • Milano
Descrizione

Obiettivi  

Informazione importanti
Sedi

Dove e quando

Inizio Luogo
Consultare
Milano
Via Valtellina, 63, 20124, Milano, Italia
Visualizza mappa

Domande più frequenti

· Requisiti

Prerequisiti

You should have:

  • General computer literacy.
  • Some experience using IBM SPSS Modeler including familiarity with the Modeler environment, creating streams, reading data files, and doing simple data exploration and manipulation using the Derive node.
  • Prior completion of Introduction to IBM SPSS Modeler and Data Mining (V16) is recommended.

Programma

Contenuti del corso

Advanced Data Preparation Using IBM SPSS Modeler (V16) covers advanced topics to aid in the preparation of data for a successful data mining project. You will learn how to use functions, deal with missing values, use advanced field operations, handle sequence data, apply advanced sampling methods, and improve efficiency.

Contenuti dettagliati del corso

Using Functions

  • Use date functions
  • Use conversion functions
  • Use string functions
  • Use statistical functions
  • Use missing value functions
Data Transformations
  • Use the Filler node to replace values
  • Use the Binning node to recode continuous fields
  • Use the Transform node to change a field´s distribution
Working with Sequence Data
  • Use cross-record functions
  • Use the Count mode in the Derive node
  • Use the Restructure node to expand a continuous field into a series of continuous fields
  • Use the Space-Time-Boxes node to work with geospatial and time data
Sampling Records
  • Use the Sample node to draw simple and complex samples
  • Draw complex samples
  • Partition the data into a training and a testing set
  • Reduce or boost the number of records
Improving Efficiency
  • Use database scalability by SQL pushback
  • Use the Data Audit node to process outliers and missing values
  • Use the Set Globals node
  • Use parameters
  • Use looping and conditional execution


Confronta questo corso con altri simili
Leggi tutto