Computer Vision & Pattern Recognition (PhD)

UNIVERSITÀ DELLA SVIZZERA ITALIANA
A Mendrisio (Svizzera)

Chiedi il prezzo

Informazione importanti

  • Corso
  • Mendrisio (Svizzera)
Descrizione

Descrizione The purpose of the course is to introduce basic problems and notions in image processing, computer vision, and patter recognition though a common geometric framework and present some classical, industry-standard and state-of-the-art methods through this framework. The course uses tools from differential geometry, calculus of variations, and numerical optimization to address problems such as image recovery (denoising, impainting, deconvolution), filtering (adaptive diffusion, bilateral and non-local means filters), 3D structure reconstruction (shape from shading, stereo, photometric stereo); and rigid and non-rigid similarity and correspondence (iterative closest point methods, multidimensional scaling, Gromov-Hausdorff distance). The emphasis is made on both formulating a rigorous mathematical model of the problem and developing an efficient numerical method for its solution, with hands-on programming exercises that solve real-world problems.

Informazione importanti
Sedi

Dove e quando

Inizio Luogo
Consultare
Mendrisio
Tessin, Svizzera
Visualizza mappa

Programma

Descrizione

The purpose of the course is to introduce basic problems and notions in image processing, computer vision, and patter recognition though a common geometric framework and present some classical, industry-standard and state-of-the-art methods through this framework. The course uses tools from differential geometry, calculus of variations, and numerical optimization to address problems such as image recovery (denoising, impainting, deconvolution), filtering (adaptive diffusion, bilateral and non-local means filters), 3D structure reconstruction (shape from shading, stereo, photometric stereo); and rigid and non-rigid similarity and correspondence (iterative closest point methods, multidimensional scaling, Gromov-Hausdorff distance). The emphasis is made on both formulating a rigorous mathematical model of the problem and developing an efficient numerical method for its solution, with hands-on programming exercises that solve real-world problems.

REFERENCES

  • R. Kimmel, Numerical Geometry of Images, Springer, 2004.
  • A. M. Bronstein, M. M. Bronstein, R. Kimmel, Numerical geometry of non-rigid shapes, Springer, 2008.