Machine Learning: Recommender Systems & Dimensionality Reduction - University of Washington

Coursera
Online

Gratis

Informazione importanti

  • Corso
  • Online
Descrizione

The following course, offered by Coursera, will help you improve your skills and achieve your professional goals. During the program you will study different subjects which are deemed to be useful for those who want to enhance their professional career. Sign up for more information!

Informazione importanti
Sedi

Dove e quando

Inizio Luogo
31 agosto 2016
Online

Cosa impari in questo corso?

IT
systems

Programma

Case Study: Recommending Products How does Amazon recommend products you might be interested in purchasing? How does Netflix decide which movies or TV shows you might want to watch? What if you are a new user, should Netflix just recommend the most popular movies? Who might you form a new link with on Facebook or LinkedIn? These questions are endemic to most service-based industries, and underlie the notion of collaborative filtering and the recommender systems deployed to solve these problems. In this fourth case study, you will explore these ideas in the context of recommending products based on customer reviews. In this course, you will explore dimensionality reduction techniques for modeling high-dimensional data. In the case of recommender systems, your data is represented as user-product relationships, with potentially millions of users and hundred of thousands of products. You will implement matrix factorization and latent factor models for the task of predicting new user-product relationships. You will also use side information about products and users to improve predictions. Learning Outcomes: By the end of this course, you will be able to: -Create a collaborative filtering system. -Reduce dimensionality of data using SVD, PCA, and random projections. -Perform matrix factorization using coordinate descent. -Deploy latent factor models as a recommender system. -Handle the cold start problem using side information. -Examine a product recommendation application. -Implement these techniques in Python.Online learning plays a key role in lifelong learning. In fact, a recent report by the United States Department of Education found that "the courses that include online education (either completely virtual or blended learning) produce, on average, much stronger learning outcomes for students courses They are conducted exclusively in person. Based on an approach developed by educational psychologist Benjamin Bloom, the mastery learning helps students to fully understand a subject before moving on to a more advanced. In Coursera, usually we give an answer immediately to the concepts that the student does not understand feedback. In many cases, we offer random versions of assessments for the student to return to school and retrying until mastered the concept.