Neuroscience

Laurea Magistrale

A Milano

6001-7000 €

Chiama il centro

Hai bisogno di un coach per la formazione?

Ti aiuterà a confrontare vari corsi e trovare l'offerta formativa più conveniente.

Descrizione

  • Tipologia

    Laurea Magistrale

  • Luogo

    Milano

Il Corso di Laurea Magistrale in "Neuroscience" - in lingua inglese - completa la formazione nelle discipline biologiche iniziata con il Corso di Laurea di primo livello in Scienze Biologiche. Questo corso di laurea magistrale ha l'obiettivo di formare laureati con una solida preparazione culturale biologica di base ed una formazione specifica per la comprensione e l'indagine sperimentale dei molteplici aspetti legati al funzionamento del sistema nervoso sia a livello molecolare e cellulare, che a livello di circuiteria integrata, in condizioni fisiologiche o di alterazione genetica o patologica.

Il percorso formativo si articola su aspetti culturali e metodologici per fornire:

conoscenze approfondite della morfologia generale del sistema nervoso e delle sue modalità di sviluppo; delle sue connessioni e delle sue modalità di funzionamento; delle modalità con cui raccoglie, codifica, elabora ed integra le varie sensazioni per fornire appropriate risposte all'ambiente; delle modalità con cui le informazioni codificate al suo interno vengono stabilizzate, memorizzate e trasformate in esperienza e coscienza di sé;
conoscenze approfondite sui processi biochimico-molecolari e cellulari delle funzioni neurali e sulle basi neurobiologiche, biochimiche e genetiche delle patologie del sistema nervoso;
aspetti metodologici e tecnologici utili allo studio del sistema nervoso e del suo funzionamento in condizioni normali e patologiche;
le metodologie sperimentali e statistiche necessarie per rendere i laureati padroni del metodo scientifico di indagine e capaci di lavorare con ampia autonomia, anche assumendo responsabilità di progetti e strutture.
Per acquisire le competenze descritte il Corso di Laurea Magistrale prevede lezioni frontali, esercitazioni e attività di laboratorio inserite nei corsi da svolgersi presso le strutture dell'Università o in laboratori convenzionati.

Sedi e date

Luogo

Inizio del corso

Milano
Visualizza mappa
Via Santa Tecla, 5

Inizio del corso

Consultare

Profilo del corso

NEUROSCIENCE

Corso di laurea magistrale

Descrizione
Piano di studi
Sbocchi professionali
Sbocchi professionali

La Laurea Magistrale in Neuroscience prepara specialisti in grado di svolgere Attività inerenti alla fisiologia del sistema nervoso presso: laboratori di analisi del Servizio Sanitario Nazionale nonché laboratori privati e convenzionati, industrie farmaceutiche, studi di comunicazione, agenzie per la divulgazione scientifica. Il laureato magistrale può svolgere attività professionali e manageriali riconosciute dalle normative vigenti per la figura professionale del biologo dopo essersi iscritto (previo superamento del relativo esame di stato) all'Albo per la professione di biologo sezione A. La Laurea Magistrale in Neuroscience è inoltre titolo per l’accesso a corsi di Dottorato di ricerca in discipline connesse con le Neuroscienze o in altre discipline biologiche o, più in generale, in altre discipline scientifiche.

Domande e risposte

Aggiungi la tua domanda

I nostri consulenti e altri utenti potranno risponderti

Inserisci i tuoi dati per ricevere una risposta

Pubblicheremo solo il tuo nome e la domanda

Opinioni

Materie

  • E-learning
  • Alzheimer
  • Strutture

Programma

  • Neuropharmacology and Biochemistry of Signalling (6 cfu)

    • SIGNALING THROUGH G-PROTEIN-COUPLED RECEPTORS Trimeric G Proteins Relay Signals From GPCRs Cyclic-AMP/mediatedsignaling, some G Proteins Signal Via Phospholipids, Ca 2+/mediated signaling, G Proteins Directly Regulate Ion Channels
      SIGNALING THROUGH ENZYME-COUPLED RECEPTORS Signaling through Receptor Tyrosine Kinases (RTKs),Signaling through Ras and MAP Kinase, Rho Family GTPases, PI-3-Kinase¬–Akt/mTOR Signaling Pathway, JAK–STAT Signaling Pathway, TGF ' Signaling
      ALTERNATIVE SIGNALING ROUTES IN GENE REGULATION Notch, Wnt, Hedgehog pathways, NF ' B-Dependent Signaling Pathway, Nuclear Receptors

  • SIGNALING THROUGH G-PROTEIN-COUPLED RECEPTORS Trimeric G Proteins Relay Signals From GPCRs Cyclic-AMP/mediatedsignaling, some G Proteins Signal Via Phospholipids, Ca 2+/mediated signaling, G Proteins Directly Regulate Ion Channels
    SIGNALING THROUGH ENZYME-COUPLED RECEPTORS Signaling through Receptor Tyrosine Kinases (RTKs),Signaling through Ras and MAP Kinase, Rho Family GTPases, PI-3-Kinase¬–Akt/mTOR Signaling Pathway, JAK–STAT Signaling Pathway, TGF ' Signaling
    ALTERNATIVE SIGNALING ROUTES IN GENE REGULATION Notch, Wnt, Hedgehog pathways, NF ' B-Dependent Signaling Pathway, Nuclear Receptors

  • Neurobiology I (6 cfu)

    • Biophysical basis for neuronal excitability. Molecular and cellular biology of the neuronal and glial
      cells. Passive transmission of electric signals in neurons and cable equations. Ionic basis of the action potentials.
      Frequency coding. Structural biology of ionic channels and receptors. Molecular and subcellular organization of the pre and post synapse.
      Neuronal cytoskeleton, axonal transport of proteins and molecular motors. Neuron-glia communication. Axonal and dendritic mRNA transport. Molecular and biophysical mechanisms of synaptic transmission.
      Neurotransmitter release. Post synaptic receptors and reversal potential. Quantal analysis of synaptic transmission
      changes. Biophysical methods for the study of electrical and chemical signalling in the brain.


  • Biophysical basis for neuronal excitability. Molecular and cellular biology of the neuronal and glial
    cells. Passive transmission of electric signals in neurons and cable equations. Ionic basis of the action potentials.
    Frequency coding. Structural biology of ionic channels and receptors. Molecular and subcellular organization of the pre and post synapse.
    Neuronal cytoskeleton, axonal transport of proteins and molecular motors. Neuron-glia communication. Axonal and dendritic mRNA transport. Molecular and biophysical mechanisms of synaptic transmission.
    Neurotransmitter release. Post synaptic receptors and reversal potential. Quantal analysis of synaptic transmission
    changes. Biophysical methods for the study of electrical and chemical signalling in the brain.


  • Nanotechnology for neurosciences (6 cfu)

    • Principles of molecular imaging. Principles and strategies for drug delivery, crossing the blood brain barrier and PNS/CNS nerve regeneration. Molecular processes at the basis of chemogenetics, optogenetics and magnetogenetics. Chemical and biochemical sensors for neuroscience-related applications. Molecular basis of the new perspectives in the development of next generation neural interfaces.

  • Principles of molecular imaging. Principles and strategies for drug delivery, crossing the blood brain barrier and PNS/CNS nerve regeneration. Molecular processes at the basis of chemogenetics, optogenetics and magnetogenetics. Chemical and biochemical sensors for neuroscience-related applications. Molecular basis of the new perspectives in the development of next generation neural interfaces.

  • Development and Differentiation of the nervous System (6 cfu)

    • Morphogenesis of the central nervous system: neurulation and neural tube formation. Molecular mechanisms of neural induction and neural patterning. Neural genesis and migration. Neural cell determination and differentiation; molecular control of gene transcription and translation in cell determination. Molecular mechanisms of cell cycle and cell death in the developing nervous system. Axon growth and guidance; target selection; map formation. Neural stem cells. Epigenetic control of neuronal commitment: molecular mechanisms of cell memory, chromatin structure and function.

  • Morphogenesis of the central nervous system: neurulation and neural tube formation. Molecular mechanisms of neural induction and neural patterning. Neural genesis and migration. Neural cell determination and differentiation; molecular control of gene transcription and translation in cell determination. Molecular mechanisms of cell cycle and cell death in the developing nervous system. Axon growth and guidance; target selection; map formation. Neural stem cells. Epigenetic control of neuronal commitment: molecular mechanisms of cell memory, chromatin structure and function.

  • Mathematics for neurosciences (6 cfu)

    • The course will provide the mathematical basis for a quantitative approach to Neurosciences and teach how to formulate, solve and interpret mathematical models for the description of neurobiological systems. Calculus, Differential equations. Linear Algebra. Elements of probability and statisticis. Statistical analysis of experimental data. Biostatisticis for the planning of experiments.

  • The course will provide the mathematical basis for a quantitative approach to Neurosciences and teach how to formulate, solve and interpret mathematical models for the description of neurobiological systems. Calculus, Differential equations. Linear Algebra. Elements of probability and statisticis. Statistical analysis of experimental data. Biostatisticis for the planning of experiments.

  • Neurobiology II (9 cfu)

    • Gross anatomy of the central nervous system.
      Sensory systems: sensory coding; processing of chemical, somatosensory, visual and acoustic stimuli.
      Motor systems: motor cortex, basal ganglia, cerebellum and descending pathways.
      Neuronal information processing (examples): gaze control; sleep and dreaming.
      Neuroendocrine interactions: regulation of food intake.
      Neurovascular interactions: physiology and pathology (retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration as examples of disrupted neurovascular interactions).


  • Gross anatomy of the central nervous system.
    Sensory systems: sensory coding; processing of chemical, somatosensory, visual and acoustic stimuli.
    Motor systems: motor cortex, basal ganglia, cerebellum and descending pathways.
    Neuronal information processing (examples): gaze control; sleep and dreaming.
    Neuroendocrine interactions: regulation of food intake.
    Neurovascular interactions: physiology and pathology (retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration as examples of disrupted neurovascular interactions).


  • Neurogenomics (6 cfu)

    • Genetics (3 CFU) Human genome structure: repetitive elements, transposable elements, regulatory sequences, non-coding RNAs, chromatin domains - Mobile DNA elements in the generation of diversity and complexity in the brain and thir implication in psychiatric disorders. Genetics of quantitative traits: GWAS and QTL analysis - Examples of GWAS and association studies relevant for the neurosciences (e.g ApoE4 and other risk factors) - Molecular evolution of genes relevant for the neurosciences (e.g. D4R, FOXP2). Trancriptomics insights into human brain evolution. Physiological genomics (3 CFU) RNA-seq techniques: sequencing, mapping and detection of differentially-expressed genes

  • Genetics (3 CFU) Human genome structure: repetitive elements, transposable elements, regulatory sequences, non-coding RNAs, chromatin domains - Mobile DNA elements in the generation of diversity and complexity in the brain and thir implication in psychiatric disorders. Genetics of quantitative traits: GWAS and QTL analysis - Examples of GWAS and association studies relevant for the neurosciences (e.g ApoE4 and other risk factors) - Molecular evolution of genes relevant for the neurosciences (e.g. D4R, FOXP2). Trancriptomics insights into human brain evolution. Physiological genomics (3 CFU) RNA-seq techniques: sequencing, mapping and detection of differentially-expressed genes

  • Transgenic models and molecular methods for Neurosciences (6 cfu)

    • Generation of transgenic organisms (C.elegans, Drosofila, Danio rerio, Xenopus, mouse); in vivo gene targeting (RNA interference, mouse gene KO and knock-in and Conditional KO); viral vectors for gene mis-expression and inactivation in vivo and in vitro; viral tracing of neuronal connections, genome editing, CRISPR Cas9; antibody and peptide libraries.

  • Generation of transgenic organisms (C.elegans, Drosofila, Danio rerio, Xenopus, mouse); in vivo gene targeting (RNA interference, mouse gene KO and knock-in and Conditional KO); viral vectors for gene mis-expression and inactivation in vivo and in vitro; viral tracing of neuronal connections, genome editing, CRISPR Cas9; antibody and peptide libraries.

  • 9 cfu a scelta nel gruppo Attività a scelta

    • Attività consigliate per la scelta dello studente
    • Omics technologies for Neurosciences (3 cfu)

      • Introduction to anaylsis of RNA-seq data. ChiP-seq, Ribosome profiling . Proteomics. Elements of network theory. Application of network theory to connectomics. Weighted gene co-expression network analysis (WGCNA). Construction of networks with Cytoscape and WGCNA in R. Integration of different -omics data. Examples of applications of WGCA to the Neurosciences
    • Comparative Neurobiology (3 cfu)

      • Analisi dei principi strutturali e funzionali dell'encefalo dei Vertebrati discussi in chiave evolutiva. Sviluppo e struttura dell'encefalo dei vertebrati. Evoluzione del telencefalo dei vertebrati. La corticogenesi nell’embrione e nell’adulto. Principi di sviluppo ed evoluzione del cervello come paradigmi per lo studio delle patologie neuro-psichiatriche.
    • Biological basis of neurodegeneration and of neurodevelopmental diseases (6 cfu)

      • Common molecular and cellular mechanisms in neurodegeneration. Physiology and pathology of amyloid precursor protein and of microtubule associated protein tau. Physiology of the cholinergic system and Alzheimer's disease and Down Syndrome. Physiology of the dopaminergic nigrostriatal pathway and Parkinson disease. Physiology and pathology of the huntingtin and fmr proteins in Huntington and Fragile X syndrome. Physiology and pathology of MeCP2 in Rett Syndrome. Neuroinflammation and pathophysiology of myelination in Multiple Sclerosis. Pathophysiology of chronic pain. Molecular and neurodevelppmental basis of neuropsychiatric disorders
    • Human Functional Imaging (3 cfu)

      • MRI, EEG and MEG techniques. Designing an fMRI experiment on sensory cortex. Resting state correlation methods and algorithms. Diffusion Tensor Imaging and correlation with anatomical pathways. Comparison between fMRI, EEG and ECoGs studies in human. fMRI techniques for topographic mapping (retinotopy, tonotopy, somatotopy etc). Laboratory Unit for fMRI analysis
    • Neurobiology of animal behaviour (6 cfu)

      • The study of the neural bases of behavior: the emergence of neuroethology. Neurobiological processing of key stimuli and organization of a coordinated motor output. Classical studies in neuroethology: electrolocation in fish; echolocation in bats and cetaceans; directional sound localization in owls; vocal learning in songbirds; local navigation and the hippocampus in rodents; large scale navigation and spatial learning in birds
    • Environmental experience and brain plasticity (3 cfu)

      • Knowledge and understanding: the course aims to provide students with up-to-date knowledge concerning the impact of environmental stimulation on brain plasticity at the behavioural, electrophysiological and molecular level. Particular attention will be paid to paradigms of early sensory deprivation (e.g. monocular deprivation, maternal separation, stress) enrichment (environmental enrichment, handling, infant massage) and their long-lasting effects for the developing subject. A special focus will be the study of paradigmatic cases of neurodevelopmental disorders (e.g. amblyopia, Down syndrome, Rett syndrome). Moreover, the course will cover the study of the mechanisms underlying brain critical periods, together with the possibility to reopen windows of enhanced cerebral plasticity in both the adult and aging brain.
    • Neural stem cells (3 cfu)

      • Stem cell basics: molecular machinery of stem cells and differentiation into specific cell types. Neural stem cells of the developing nervous system. Adult neural stem cells. Alternative sources of neural stem cells: induced pluripotent stem cells (iPS) and direct reprogramming. Clinical application of neural stem cells.
    • Analysis of temporal series (3 cfu)

      • The course will provide the programming basis for a quantitative approach to the analysys of the neurobiological signals and teach how to formulate, solve and interpret matlab programming language. Programming statistical analysis of experimental data. Introduction to the Matlab development environment Scalars, vectors, matrices and relative operators Creation of graphic user interfaces (GUIs) How to share and exchange data between different GUIs. Spectral and statistical analysis of temporal series applied to the study of electrophysiological signals and calcium imaging

  • Attività consigliate per la scelta dello studente

  • Omics technologies for Neurosciences (3 cfu)

    • Introduction to anaylsis of RNA-seq data. ChiP-seq, Ribosome profiling . Proteomics. Elements of network theory. Application of network theory to connectomics. Weighted gene co-expression network analysis (WGCNA). Construction of networks with Cytoscape and WGCNA in R. Integration of different -omics data. Examples of applications of WGCA to the Neurosciences

  • Introduction to anaylsis of RNA-seq data. ChiP-seq, Ribosome profiling . Proteomics. Elements of network theory. Application of network theory to connectomics. Weighted gene co-expression network analysis (WGCNA). Construction of networks with Cytoscape and WGCNA in R. Integration of different -omics data. Examples of applications of WGCA to the Neurosciences

  • Comparative Neurobiology (3 cfu)

    • Analisi dei principi strutturali e funzionali dell'encefalo dei Vertebrati discussi in chiave evolutiva. Sviluppo e struttura dell'encefalo dei vertebrati. Evoluzione del telencefalo dei vertebrati. La corticogenesi nell’embrione e nell’adulto. Principi di sviluppo ed evoluzione del cervello come paradigmi per lo studio delle patologie neuro-psichiatriche.

  • Analisi dei principi strutturali e funzionali dell'encefalo dei Vertebrati discussi in chiave evolutiva. Sviluppo e struttura dell'encefalo dei vertebrati. Evoluzione del telencefalo dei vertebrati. La corticogenesi nell’embrione e nell’adulto. Principi di sviluppo ed evoluzione del cervello come paradigmi per lo studio delle patologie neuro-psichiatriche.

  • Biological basis of neurodegeneration and of neurodevelopmental diseases (6 cfu)

    • Common molecular and cellular mechanisms in neurodegeneration. Physiology and pathology of amyloid precursor protein and of microtubule associated protein tau. Physiology of the cholinergic system and Alzheimer's disease and Down Syndrome. Physiology of the dopaminergic nigrostriatal pathway and Parkinson disease. Physiology and pathology of the huntingtin and fmr proteins in Huntington and Fragile X syndrome. Physiology and pathology of MeCP2 in Rett Syndrome. Neuroinflammation and pathophysiology of myelination in Multiple Sclerosis. Pathophysiology of chronic pain. Molecular and neurodevelppmental basis of neuropsychiatric disorders

  • Common molecular and cellular mechanisms in neurodegeneration. Physiology and pathology of amyloid precursor protein and of microtubule associated protein tau. Physiology of the cholinergic system and Alzheimer's disease and Down Syndrome. Physiology of the dopaminergic nigrostriatal pathway and Parkinson disease. Physiology and pathology of the huntingtin and fmr proteins in Huntington and Fragile X syndrome. Physiology and pathology of MeCP2 in Rett Syndrome. Neuroinflammation and pathophysiology of myelination in Multiple Sclerosis. Pathophysiology of chronic pain. Molecular and neurodevelppmental basis of neuropsychiatric disorders

  • Human Functional Imaging (3 cfu)

    • MRI, EEG and MEG techniques. Designing an fMRI experiment on sensory cortex. Resting state correlation methods and algorithms. Diffusion Tensor Imaging and correlation with anatomical pathways. Comparison between fMRI, EEG and ECoGs studies in human. fMRI techniques for topographic mapping (retinotopy, tonotopy, somatotopy etc). Laboratory Unit for fMRI analysis

  • MRI, EEG and MEG techniques. Designing an fMRI experiment on sensory cortex. Resting state correlation methods and algorithms. Diffusion Tensor Imaging and correlation with anatomical pathways. Comparison between fMRI, EEG and ECoGs studies in human. fMRI techniques for topographic mapping (retinotopy, tonotopy, somatotopy etc). Laboratory Unit for fMRI analysis

  • Neurobiology of animal behaviour (6 cfu)

    • The study of the neural bases of behavior: the emergence of neuroethology. Neurobiological processing of key stimuli and organization of a coordinated motor output. Classical studies in neuroethology: electrolocation in fish; echolocation in bats and cetaceans; directional sound localization in owls; vocal learning in songbirds; local navigation and the hippocampus in rodents; large scale navigation and spatial learning in birds
    .

  • The study of the neural bases of behavior: the emergence of neuroethology. Neurobiological processing of key stimuli and organization of a coordinated motor output. Classical studies in neuroethology: electrolocation in fish; echolocation in bats and cetaceans; directional sound localization in owls; vocal learning in songbirds; local navigation and the hippocampus in rodents; large scale navigation and spatial learning in birds

  • Environmental experience and brain plasticity (3 cfu)

    • Knowledge and understanding: the course aims to provide students with up-to-date knowledge concerning the impact of environmental stimulation on brain plasticity at the behavioural, electrophysiological and molecular level. Particular attention will be paid to paradigms of early sensory deprivation (e.g. monocular deprivation, maternal separation, stress) enrichment (environmental enrichment, handling, infant massage) and their long-lasting effects for the developing subject. A special focus will be the study of paradigmatic cases of neurodevelopmental disorders (e.g. amblyopia, Down syndrome, Rett syndrome)
  • Chiama il centro

    Hai bisogno di un coach per la formazione?

    Ti aiuterà a confrontare vari corsi e trovare l'offerta formativa più conveniente.

    Neuroscience

    6001-7000 €